	科目	ソフトウェア工学 (Software Engineering)				
担当教員		若林 茂 教授				
対象学年等		電子工学科·4年·通年·必修·2単位(学修単位III)				
学習·教育目標		A3(50%), A4-D4(50%)				
授業の 概要と方針		「プログラミングI」、「プログラミングII」で身につけたアルゴリズム・データ構造の基礎の上に、ソフトウェア設計方法論やプログラミング方法論を学習する。また、総合情報センターのコンピュータシステムを利用して演習を行う。特に、後期はグループでのプログラム共同開発に取り組む.				
		到 達 目 標	達成	度	到達目標別の評価方法と基準	
1	【A3】ソフトウェ 抽象化など)な	A3】ソフトウェアの基礎概念(モジュラリティ・段階的詳細化・情報隠蔽・ 由象化など)が理解できる.			レポート(設計仕様書・テスト結果報告書など),演習で評価する.	
2	【A4-D4】設計仕様書からプログラムを作成することができる.				レポート(設計仕様書・テスト結果報告書など),演習およびプレゼンテーション で評価する.	
3	【A4-D4】自分の実現したいことを設計仕様書にまとめることができる.				レポート(設計仕様書・テスト結果報告書など),演習で評価する.	
4						
5						
6						
7						
8						
9						
10						
総合評価		成績は、レポート70% プレゼンテーション10% 演習20% として評価する.100点満点で60点以上を合格とする.この科目では「自分の実現したいことを他人に分かるように表現すること」(設計仕様書の作成)と「仕様書からプログラムを実際に実現できること」(プログラミング)を学習する.その科目の性格上,筆記試験は行わない.				
テキスト		プリント(参考書等から重要部分を抜粋)				
参考書		「ソフトウェア工学実践の基礎」:落水浩一郎(日科技連) 「はじめて学ぶプログラム設計」:林雄二(森北出版) 「新訂新C言語入門シニア編」:林晴比古(ソフトバンク) 「プログラミング言語 C 第2版」:カーニハン,リッチー(共立出版)				
関連科目		プログラミング I, プログラミング II				
履修上の 注意事項		神戸市情報関係企業の外部講師による特別授業を1~2回実施する場合がある.				

	授業計画(ソフトウェア工学)					
	テーマ	内容(目標・準備など)				
1	ソフトウェア工学の基礎概念	ソフトウェア工学の基礎概念について概説する。また,演習環境について説明する。				
2	構造と動作の抽象	「車のハンドル」,「素数一覧表」の問題を題材にして構造と動作の抽象について説明する.				
3	構造化プログラミング,および,課題1の説明	「曲線の印刷」の問題を題材にして構造化プログラミングの考え方を説明する.また,課題1について説明する.				
4	段階的詳細化,および,課題1の演習1回目	「曲線の印刷」の問題を題材にして段階的詳細化の考え方を説明する.また,課題1の演習を行う.				
5	段階的詳細化,および,課題1の演習2回目	「曲線の印刷」の問題を題材にして段階的詳細化の考え方を説明する.また,課題1の演習を行う.				
6	プログラミング技法,および,課題1の演習3回目	プログラミング技法について解説する.また,課題1の演習を行う.				
7	プログラム設計技法,および,課題1の演習4回目	プログラム設計技法について解説する.また,課題1の演習を行う.				
8	課題1のレポート検討	課題1のレポートについて検討する.				
9	構造化プログラミング,および,課題2の説明	「製本プログラム」の問題を題材にして構造化プログラミングの考え方を説明する.また,課題2について説明する.				
10	段階的詳細化,および,課題2の演習1回目	「製本プログラム」の問題を題材にして段階的詳細化の考え方を説明する.また,課題2の演習を行う.				
11	段階的詳細化,および,課題2の演習2回目	「製本プログラム」の問題を題材にして段階的詳細化の考え方を説明する.また,課題2の演習を行う.				
12	プログラム設計技法,および,課題2の演習3回目	プログラム設計技法について解説する.また,課題2の演習を行う.				
13	システム設計技法,および,課題2の演習4回目	システム設計技法について解説する.また,課題2の演習を行う.				
14	課題2のレポート検討	課題2のレポートについて検討する.				
15	前期のまとめ	前期のまとめを行う.				
16	課題3(グループ課題)の説明と班分け	課題3(グループ課題)の説明を行う.班分け後,班ごとの打合せを行う.				
17	抽象データ型とクラス,および,課題3の演習1回目	「製本プログラム」の問題を題材にして抽象データ型とクラスの考え方を説明する.また,課題3の演習を行う.				
18	抽象データ型とクラス,および,課題3の演習2回目	「製本プログラム」の問題を題材にして抽象データ型とクラスの考え方を説明する.また,課題3の演習を行う.				
19	テスト技法,および,課題3の演習3回目	テスト技法について解説する.また,課題3の演習を行う.				
20	テスト技法,および,課題3の演習4回目	テスト技法について解説する.また,課題3の演習を行う.				
21	課題3のプレゼンテーション1回目	前半4班のプレゼンテーションを行う、作品・発表について学生が相互評価する.				
22	課題3のプレゼンテーション2回目	後半4班のプレゼンテーションを行う、作品・発表について学生が相互評価する.				
23	課題4(グループ課題)の説明と班分け	課題4(グループ課題)の説明を行う.班分け後,班ごとの打合せを行う.				
24	モデリング,および,課題4の演習1回目	「家計シミュレーションシステム」の問題を題材にしてモデリングの考え方を説明する.また,課題4の演習を行う.				
25	モデリング,および,課題4の演習2回目	「家計シミュレーションシステム」の問題を題材にしてモデリングの考え方を説明する.また,課題4の演習を行う.				
26	要求定義技法,および,課題4の演習3回目	要求定義技法について解説する.また,課題4の演習を行う.				
27	保守技法,および,課題4の演習4回目	保守技法について解説する.また,課題4の演習を行う.				
28	課題4のプレゼンテーション1回目	前半4班のプレゼンテーションを行う.作品・発表について学生が相互評価する.				
29	課題4のプレゼンテーション2回目	後半4班のプレゼンテーションを行う.作品・発表について学生が相互評価する.				
30	後期のまとめ	最新の話題を題材にして1年間のまとめを行う.				
備考	本科目の修得には、60 時間の授業の受講と 30 時間の自己学習が必要である。 中間試験および定期試験は実施しない。					