	科目	レーザー工学 (Laser Engineering)		神戸中立工業向寺寺 1子校 2023年度ノブ ハ	
±I	3.4.数昌	熊野 智之 准教授			
担当教員					
対象学年等		機械システム工学専攻・1年・前期・選択・2単位【講義】			
学習·教育目標		A2(60%), A4-AM3(20%), B1(10%), B4(10%)			
f		レーザーは新技術として広く応用されており,特に計測,加工技術においてその比重が高まっている.講義と英語文献の読解を通し,レーザー光の発生原理,特徴を理解させるとともに,多分野で応用される所以を認識させる.また,学生による発表形式も取り入れ,プレゼンテーション能力を養う.			
		到 達 目 標	達成度	到達目標別の評価方法と基準	
1	【A2】レーザー	-の基本原理を理解できる.		自然放出と誘導放出の違い,反転分布の機構を理解しているかを定期試験 で評価する.	
2	【A2】レーザー光の特徴が理解できる.			レーザー光の有する干渉性,指向性,単色性などについて正しく理解できているかを定期試験で評価する.	
3	[B1]レーザー装置についての発表を通してプレゼンテーション力を養成することができる.			各種レーザー装置についてのプレゼンテーションおよびレポートにより評価する.	
4	【B4】英語文献の輪読により,レーザーについての述語を習得する.			英文を正しく和訳し,意味を理解できているかを輪読の内容およびレポートに より評価する.	
5	[A4-AM3]レーザー光の制御方法とパワーなどの測定方法を理解できる・			レーザー光の制御とパワー,パルス幅などの特性を測定する方法を理解しているかを定期試験およびレポートで評価する.	
6	[A2]レーザー光が応用されている分野,応用例などを理解する.			レーザー光の利用されている分野は広いが,その応用例についての知識を定期試験およびレポートで評価する.	
7	【A2】広汎に用いられているレーザー加工技術について理解できる.			いろいろなレーザー加工技術についての知識を定期試験およびレポートで評価する.	
8					
9					
10					
		成績は,試験80% レポート10% プレゼンテーション5% 英語輪講5% として評価する.100点満点で60点以上を合格とする.			
テキスト		「工学系学生のための光・レーザー工学入門」: 中野人志 著(コロナ社)			
参考書		「基礎 光エレクトロニクス」:藤本昌 著(森北出版) 「レーザー技術入門講座」: 谷腰欣司 著(電波新聞社)			
関連科目		応用物理I,応用物理II			
履修上の 注意事項					

授業計画(レーザー工学)				
	テーマ	内容(目標・準備など)		
1	レーザー開発の歴史的背景	メーザーの発明から最初のルビーレーザー発明に至る歴史的背景を解説し、その重要性を説明する。		
2	レーザー光の特徴	レーザー光と自然光の違いを述べ,レーザー光の優れた特徴(指向性,単色性,コヒーレンスなど)を述べる.		
3	レーザー光の発生原理(1)	レーザー光の発生原理を理解するために必要な,量子力学や統計力学の基礎について講義する.		
4	レーザー光の発生原理(2)	レーザー光の発生原理を説明する.特に,エネルギー準位や,自然放出と誘導放出との違いについて述べる.		
5	レーザー光の発生原理(3)	レーザー光の発生原理を説明する.特に,反転分布と光の増幅,光共振器について述べる.		
6	レーザー概論(英語文献)(1)	レーザー総論についての英語文献を輪読し,読解力を養うとともに,これまでの授業の内容の復習を行う.		
7	レーザー概論(英語文献)(2)	レーザー総論についての英語文献を輪読し,読解力を養うとともに,これまでの授業の内容の復習を行う.		
8	レーザーの種類	気体レーザーと固体レーザー,色素レーザー,半導体レーザーについて概要を説明し,主な用途などについて述べる.		
9	レーザー装置(発表)(1)	担当者は,気体レーザーや色素レーザーについて調査し,発表する.学生間で質疑応答や議論を行うことで,理解を深める.		
10	レーザー装置(発表)(2)	担当者は,固体レーザーについて調査し,発表する.学生間で質疑応答や議論を行うことで,理解を深める.		
11	レーザー装置(発表)(3)	担当者は,半導体レーザーなどについて調査し,発表する.学生間で質疑応答や議論を行うことで,理解を深める.		
12	レーザー光の制御	レーザー光の制御方法について説明する.		
13	レーザー応用(1)	レーザーを用いた計測手法について解説する.		
14	レーザー応用(2)	レーザー加工や最新のレーザー応用技術について述べる.		
15	総合演習	これまで学習した内容の総まとめを行う.		
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
/#	前期定期試験を実施する.			

前期定期試験を実施する. ・本科目の修得には、30 時間の授業の受講と 60 時間の事前・事後自己学習が必要である.事前学習では次回の授業範囲について教科書を読み,各自で理解できないところを整理しておくこと.事後学習では,授業内容を復習し,興味を持ったことを調べてノート等にまとめておくこと.