	科目	応用化学実験Ⅱ (Laboratory Work II in Applie	ed Cher	mistry)	
担当教員		[前期] 渡辺 昭敬 教授, 九鬼 導隆 教授, 根本 忠将 教授, 小泉 拓也 教授, [後期] 渡辺 昭敬 教授, 根本 忠将 教授, 小泉 拓也 教授, 安田 佳祐 准教授			
 対象学年等		応用化学科·3年·通年·必修·4単位【実験実習】(学修単位I)			
学習	·教育目標	A4-C1(30%), A4-C3(30%), B1(10%), B2(10%), C4(10%), D1(10%)			
授業の 概要と方針		本実験では有機化学分野と物理化学分野の実験を行う.有機化学実験では,有機化学反応における理論について講義を通して理解した内容と関連させて,基本的な実験により操作法および考え方を修得させる.物理化学実験においては物理化学の講義の理解度を深めるとともに,各種測定機器の取り扱い法およびその応用を習得させる.			
		到 達 目 標	達成度	到達目標別の評価方法と基準	
1	【A4-C1】有機 とともに反応性	化学の講義で学んだ知識を実験を行うことにより確かめる 生や反応機構が理解できる.		有機化合物の反応性や反応機構の理解度を実験技術とレポートにより評価 する.	
2	【A4-C1】有機化合物の合成法(反応,分離・精製,同定法)に必要な基本的な操作法を習得する.			有機化合物の合成実験(反応,分離・精製,同定法)における操作法の習熟度 を実験技術とレポートにより評価する.	
3	【A4-C3】気体・液体・固体の基礎物性の測定方法について実験の精度とともに理解できる.			蒸気密度、液体の密度・粘度・屈折率、凝固点降下などの基礎物性の測定結果について、レポートを提出させて測定法の理解ができているか評価する.	
4	【A4-C3】液体相互間での各種反応における物理化学的物性を測定し,現象を理解できる.			液体の相互溶解度,分配係数,吸着,表面張力などの実験結果について,レポートを提出させて測定法の理解ができているか評価する.	
5	[A4-C3]電解質溶液中での電気化学的な挙動について計測し,現象を理解できる.			起電力,分解電圧,輸率,pH緩衝液などの実験結果について,レポートを提出させて測定法の理解ができているか評価する.	
6	【B1】シミユレーション計算によって各種データを予測することができる.また,結果を既存のデータと比較することができる.			シミュレーション計算(主にGaussian 16による分子に関する種々物質量の計算)を実行し,得られたデータを文献と比較,検討ができるかレポートで評価する.	
7	【B2】実験結果を説明することができる.			実験結果を説明できるかをレポートで評価する.	
8	[C4]グループで協力して実験を行うことができる.			グループ内での行動や実験に対する姿勢を実験技術で評価する.	
9	【D1】実験廃液,廃棄物の分別や処理が的確にできる.			実験廃液,廃棄物の分別や処理が的確にできるかを実験技術で評価する.	
10					
総合評価		成績は、レポート85% 実験技術15% として評価する、100点満点で60点以上を合格とする、原則として未提出のレポートがあった場合は不合格とする、また、レポートの提出が遅れた場合にはその日数に比例して減点する、なお実験技術の評価には事前の実験ノート作成をふくめる。			
テキスト		(有機化学実験) プリント (物理化学実験) プリント および 「物理化学実験法」:鮫島実三郎 著(掌華房)			
参考書		(有機化学実験)「ハート基礎有機化学 三訂版」: H. Hart・L. E. Craineet al. 共著・秋葉欣哉ら 共訳(培風館) (物理化学実験)「物理化学要論 第7版」P. W. Atkins・J.de.Paula 著・千原秀昭・稲葉章 訳(東京化学同人) (物理化学実験)「溶液内イオン平衡に基づく 分析化学 第2版」: 姫野貞之・市村 彰男 共著(化学同人)			
関連科目		C2 有機化学I,C2 分析化学I,C3 分析化学II,C3 有機化学II,C3 物理化学I			
履修上の 注意事項		各実験テーマの基礎となる反応理論や計算理論を十分に理解しておくこと.			

授業計画(応用化学実験)				
	テーマ	内容(目標・準備など)		
1	(前期有機化学実験) 説明 (実験内容,レポート,安全管理等注意)	前期に行う実験内容について説明し、レポートの書き方について注意点などを説明する。また実験を行う際の機器,薬品等の取り扱い,安全管理について説明する。		
2	ガラス細工および炭化水素の実験	ガラス細工の技術を習得し,実験に使用する器具(ピペット,毛細管等)を作製する.炭化水素の化学的性質を調べる.		
3	アルコールおよびエーテルの実験	アルコールおよびエーテルの反応性や化学的性質を調べる.		
4	臭化エチルの合成	臭化エチルの合成実験を通して実験操作法を修得する.		
5	ハロゲン化合物の実験	ハロゲン化合物の反応性 (SN1,SN2反応) や化学的性質を調べる.		
6	アルデヒドおよびケトンの実験	アルデヒドおよびケトンの実験を通して、カルボニル化合物の反応性や検出法などを修得する.		
7	酢酸エチルの合成およびガスクロマトグラフィー分析	酢酸エチルの合成実験を通して実験操作法を修得する.また,ガスクロマトグラフィー分析について学ぶ.		
8	(前期物理化学実験) 説明 (実験内容,レポート,安全管理等注意)	前期に行う実験内容について説明し,レポートの書き方について注意点などを説明する.また実験を行う際の機器,薬品等の取り 扱い,安全管理について説明する.		
9	液体の相互溶解度	水-ベンゼン-酢酸の三成分混合物系の相互溶解度を測定する.同時に三角座標を用いたグラフの作成法も学ぶ.		
10	分配係数	分配の法則に基づいて,コハク酸の水とエーテルに対する分配係数を測定する.		
11	一次反応速度	酢酸メチルの塩酸による加水分解反応を時間的に追跡することにより擬一次反応の取り扱いを理解する.		
12	液体の密度・粘度・屈折率	基本的な物性定数を理解し、その測定法を学ぶ、水と2-プロパノール混合液についてその密度・粘度・屈折率を測定する.		
13	凝固点降下	溶媒にベンゼン、溶質にメチルナフタレンを用いて、ベックマン温度計でモル凝固点降下を調べることにより溶質の分子量を測定する.		
14	蒸気密度の測定及びその分子量の評価	ビクターマイヤー法により,クロロホルム,ジクロロメタンおよびトリクロロエチレンの蒸気密度を測定する.その結果からそれぞれの分子量を計算により求め,理論値との比較を行う.		
15	前期実験全般のまとめあるいは工場見学	前期で行った実験のまとめを行う.あるいは工場見学を行い,実際に化学がどのように社会に貢献しているかを学ぶ.		
16	(後期有機化学実験)説明 (実験内容,レポート,安全管理等注意)	後期に行う実験内容について説明し、レポートの書き方について注意点などを説明する。また実験を行う際の機器,薬品等の取り扱い,安全管理について説明する。		
17	トリフェニルメタノールの合成1	Grignard反応によるトリフェニルメタノールの合成実験を通し,無水条件下での実験操作法を習得する.		
18	トリフェニルメタノールの合成2	生成物の分離・精製(水蒸気蒸留,再結晶)と融点測定の操作法を習得する.		
19	アジピン酸ジエチルの合成1	エステル化反応における平衡反応下での合成実験操作法を習得する.		
20	アジピン酸ジエチルの合成2	生成物の分離・精製(減圧蒸留)の操作法を習得する.		
21	トルエンのニトロ化反応およびガスクロマトグラフィーを用いた異性体 の分離	トルエンのニトロ化反応を行い,生成物をガスクロマトグラフィー分析することにより異性体生成比を求める.		
22	安息香酸メチルのニトロ化反応およびガスクロマトグラフィーを用いた 異性体の分離	安息香酸メチルのニトロ化反応を行い、生成物をガスクロマトグラフィー分析することにより異性体生成比を求める。		
23	(後期物理化学実験)説明 (実験内容,レポート,安全管理等注意)	後期に行う実験内容について説明し、レポートの書き方について注意点などを説明する。また実験を行う際の機器,薬品等の取り扱い,安全管理について説明する。		
24	量子化学計算実習1	Gaussian16WならびにGaussView6を使用して,簡単な量子化学計算を実行できるように操作法を習得する.		
25	量子化学計算実習2	習得した操作法をもとに、種々の化合物の振動スペクトルやNMRスペクトル,UVスペクトルなどの各種分光スペクトルを量子化学計算によって予測し、既存のデータベースとの比較を行う.		
26	液体中の吸着現象	数種類の濃度の酢酸水溶液を作り、これに活性炭を入れ、それぞれの酢酸の吸着量を滴定によって求める、次にその濃度と吸着量の関係をフロインドリッヒの式に代入し、グラフから定数a、n を求める.		
27	pHメーターの使用,緩衝液	酸塩基滴定,キレート滴定のpHを測定し,そのpH曲線を作成する.その結果より緩衝液の原理を理解し,pHメーターの使用方法を習得する.		
28	起電力・分解電圧の測定	カドミウム標準電池を用いて乾電池の起電力を測り、またこの乾電池を用いて、濃淡電池、ダニエル電池の起電力を求める、次に分解電圧測定装置を組み立て、4種類の金属塩の電解液について電流・電圧の関係から分解電圧を求める.		
29	輸率・表面張力の測定	硝酸銀水溶液中における銀イオンおよび硝酸イオンの輪率を測定する.また,デュヌイの表面張力計を用いて水の表面張力からエタノールおよびベンゼンの表面張力を求める.		
30	後期実験全般のまとめあるいは工場見学	後期で行った実験のまとめを行う.あるいは工場見学を行い,実際に化学がどのように社会に貢献しているかを学ぶ.		
備	中間試験および定期試験は実施しない。			

中間試験および定期試験は実施しない。 | プラスを2グループに分け、グループ毎に前期・後期とも2分野 (有機化学実験および物理化学実験) を実施する。